A greedy model with small world for improving the robustness of heterogeneous Internet of Things

نویسندگان

  • Tie Qiu
  • Diansong Luo
  • Feng Xia
  • Nakema Deonauth
  • Weisheng Si
  • Amr Tolba
چکیده

Robustness is an important and challenging issue in Internet of Things (IoT), which contains multiple types of heterogeneous networks. Improving the robustness of topological structure, i.e., withstanding a certain amount of node failures, is of great significance especially for the energy-limited lightweight networks. Meanwhile, a high-performance topology is also necessary. The small world model has been proven a feasible way to optimize the network topology. In this paper, we propose a Greedy Model with Small World properties (GMSW) for heterogeneous sensor networks in IoT. We first present the two greedy criteria used in GMSW to distinguish the importance of different network nodes, based on which we define the concept of local importance of nodes. Then, we present our algorithm that transforms a network to possess small world properties by adding shortcuts between certain nodes according to their local importance. Our performance evaluations demonstrate that, by only adding a small number of shortcuts, GMSW can quickly enable a network to exhibit the small world properties. We also compare GMSW with a latest related work, the Directed Angulation toward the Sink Node Model (DASM), showing that GMSW outperforms DASM in terms of small world characteristics and network latency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of RPL Routing Protocol for Internet of Things

The emerging Internet of Things (IoT) connects the physical world to the digital one and composes large networks of smart devices to support various applications. In order to provide a suitable communication in such networks, a reliable routing protocol is needed. In this paper, a modified version of an IPv6 Routing Protocol for Low-Power and Lossy networks (RPL), which has been standardized by...

متن کامل

A Novel Trust Management Model in the Social Internet of Things

The Internet of Things (IoT) and social networking integration, create a new concept named Social Internet of Things (SIoT) according to which the things are able to autonomously establish social relationships with regard to the owners. Things in SIoT operate according to a service-oriented architecture. There may be misbehaving owners and consequently misbehaving devices that can perform harmf...

متن کامل

A Survey of Anomaly Detection Approaches in Internet of Things

Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...

متن کامل

Internet of Things: A Survey for the Individuals' E-Health Applications

In today's world, the Internet of Things (IoT), which is a fairly new technology, has become a popular topic for discussion. Meanwhile, the increasing demand for personalized healthcare with the assistance of new technologies has created new applications called e-health IoT applications; however, researchers are still attempting to find its applications, therefore they have not been able to foc...

متن کامل

Tsunami warning system using of IoT

Abstract   Today, the world has reached a new nature with advances in science. The Internet of Things is a technology that can connect all objects in different fields through the Internet. Any unforeseen event that destroys economic, social and physical capabilities and inflicts human and financial losses is known as a natural disaster, such as a tsunami. IoT-based tsunami forecasting system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Networks

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2016